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We  have found that running electrostatic particle codes at relatively large o, At in some 
circumstances does not significantly affect the physical results. We  first present results from a 
single particle mover finding the correct first order drifts for large w,, At. We  then characterize 
the numerical orbit of the Boris algorithm for rotation when o,, Af P 1. Next, an analysis of 
the guiding center motion is given showing why the first order drift is retained at large w,, Al. 
Lastly, we present a plasma simulation of a one dimensional cross field sheath, with large and 
small w,, At, with very little difference in the results. 8 1991 Academic Press, Inc. 

1. INTRODUCTION 

We have been  using a  bounded two-dimensional electrostatic particle code [ 1  ] 
to study cross field sheaths [2] and  electrostatic effects produced by nonuniform 
magnetic fields [3]. We  found that running with “unacceptably” large values of 
o,, At ( - 4) did not appear  to cause any significant problems in these simulations. 
Hence, we address the issue of why plasma simulation with large o,, At under  
certain circumstances can produce physically acceptable results. 

When  numerically simulating a  magnet ized plasma with particle elctrons, the 
lim iting time  scale in some situations is the electron cyclotron period, with a  con- 
straint on  o,, At. However, under  circumstances in which we are not interested in 
the short time  scale physics, this constraint can make simulation of other effects at 
longer time  scales very expensive. In explicit simulations, the requirement that 
ape  At be small for stability often determines the lim it on  At rather then w,,. 
However, in implicit particle simulations where the wpe At constraint has been  
relaxed, the requirement of small o,, At can be  especially restrictive. Implicit 
simulations have been  done  with large mce At by decentering the particle advance 
slightly which damps out the gyromotion [4]. Another method is to use the 
guiding center equations for electrons [S] to remove the o,, At timescale. It is also 
possible to use special values of w,, At (with o, At $ 1) that satisfy Eq. (3) below 
and  use the rotation method of Buneman [6,7]. The  Buneman method has been  
analyzed previously in Ref. [6] and  does not produce the correct drift motion for 
large, arbitrary w,, At. 

We have chosen to explore the feasibility of running with large o,, At using the 
standard v x B rotation scheme of Boris [S, 91. The  reason for doing this, besides 
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simplicity, is that for modeling systems with a nonuniform magnetic field, o,, At 
can vary greatly (e.g., at a field null point) and At would need to be restricted by 
the largest value of o,, . In such a problem one cannot necessarily assume guiding 
center motion throughout the system because there may be regions of weak 
magnetization. 

We begin by showing single particle orbits obtained with large CD,, At and com- 
pare those to more exact orbits obtained with small w,, At. Then, we discuss the 
orbit characteristics when o,, At is large. Next, an analysis of the the guiding center 
motion is given obtaining correct first order drifts. Finally, we show a collective 
model with many particles in which the results appear to be only slightly affected 
by using large w,, At. 

2. RESULTS FROM A SINGLE PARTICLE MOVER FOR w,, At $1 

In order to study the errors introduced by using large o,, At, we used the Boris 
mover in three dimensions on a single particle. The first four figures show single 
particle orbits with both large and small w,, At. The converged orbit (w,, At small) 
is the “thick” center line and the large o,, At orbit oscillates alternately above and 
below the true orbit each step. The correct drift motion is retained but there is a 
numerically induced oscillation radius we will call ros, and an oscillation frequency 
we will call oos, which is a numerical alteration of the true gyroradius and 
gyrofrequency. We will discuss this oscillation further in the following section. 
The charge to mass ratio was set equal to negative one for all the following runs 
(q/m = - 1). 

Figure 1 shows the E x B drift motion for two cases: o,, At = 0.5 and 50. The 
following parameters are the same for both cases: v(t =0) = (0.1, 0.0,0.4), B = 
(250, 0, 0), and E = (0, 0, 1). The E x B drift velocity is measured as 0.0049, as 
expected from uY = E,/BX and the total time T= 100. For the run with CD,, At = 50; 
ros z v L A t/2, and mprec x 0.4 as expected from the calculation in Section 3. 

Figure 2 shows two runs with w, At = 0.5 and 16. In these runs the magnetic 
field is that caused by a line current along 4, centered at (x, y) = (10, 10). B is given 
by: B = (800/r-)8. The initial position and velocity were: x(t = 0) = (0, 10, 0), and 
v( t = 0) = (0.16, 1, 0); and the total time was: T= 200. The particle has a parallel 
velocity component, vO, and follows the associated field line in the x - y plane 
(circular motion). The curvature drift velocity is measure to be 1.25 x lop3 Z as 
predicted. 

Figure 3 shows the B xVB drift motion due to vI for o,, At =0.5 and 50. The 
magnetic field is: B = (100 - 25y).?, and the initial velocity is: v(t = 0) = (0, 0, 2), 
giving a drift velocity of: vvB = 0.005i. 

Figure 4 shows the polarization drift motion with w,, At equal to 0.5 and 50. The 
fields are: E = -2tj and B = 1002. The initial velocity is: v(t = 0) = (0, 0, O.l), giving 
a drift velocity of: vP = 2 x 10 -“i. 
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FIG. 1. E x B drift. Two cases: o,, dt = 0.5 (thick line) and w,, Af = 50. 
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FIG. 2. Curvature drift. Two cases: w, A? = 0.5 and 16. 



94 

Z 

PARKER AND BIRDSALL 

Particle Position 
I 1 I 

I I I I 
B  N 

Y 
FIG. 3. Gradient B drift. Two cases: w, Al = 0.5 and SO. 

Particle Position 
60 - 

90 - 

20 - 

0- 

/ 

I’ 
& 

Y 
FIG. 4. Polarization drift. Two cases: w,, df = 0.5 and SO 
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We have also tested bounce motion in a simple mirror field producing the correct 
drift motion with large o,, At (see Ref. [lo]). Note that in all these examples 
the averaged orbits (or drifts) are approximately equal. As long as roS is small 
compared to the scale lengths of interest, then the drift plus the oscillatory motion 
may be acceptable in many particle plasma simulations. 

3. ORBIT CHARACTERISTICS WITH o,, At+ 1 

In this section we characterize the electron orbit when o,, At is large. The 
following analysis applies to single particle motion for any particle, but we focus on 
electrons since they have the most limiting time and space scales in conventional 
plasma simulations. We assume that the Lorentz equation is approximated with a 
finite difference equation similar to that of Buneman [ 111 having the form 

-&v 4- 1 n+1/2-v"-l/2)=- E"+-(v"+1/2+v"-1/2)x~~ 
m i 2 I9 

where E” is the difference operator approximating E(x”, t”) to second order in 
time, and likewise for B”. For example, the explicit leapfrog method would 
use: E” = E(x”, t”). An implicit example is the Dl scheme [ll]: E” = 
+(E(x”+l, t”+’ ) + En-‘)). With the new velocity, the particle is then spatially 
advanced using: 

; (Xflfl -Xn)=v”+1/2 

The v x B rotation scheme of Boris gives the angle of rotation for one time step as 
181: 

o,, At = tI = 2 arc tan(&o,, At). (3) 

As w,, At + co, 6 + z. The orbit for o,, At S 1 can be described as rapid bounce 
back and forth motion (so-called odd-even motion) with the perpendicular velocity 
and a slow precession about the guiding center axis. For large w,, At, the angle of 
rotation is approximately 

4 ez:n-- 
CD, At’ (4) 

The precession is the result of the rotation angle being a small amount 6 less than 
rc, 6 = 7c - 8. The frequency of this precession is 

581/97,‘1-7 
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The rotation frequency is slightly less than n/At (much less than w,,). We call this 
the “oscillation” frequency: 

(6) 

Note that ceprec goes to zero, and w,, goes to n/At, for large w,, At. 
The gyroradius is also altered, we call this numerical gyroradius the oscillation 

radius. The oscillation radius for all values of o,, At is given by (see Fig. 4-3b in 
Ref. [8]): 

r 
OS = 2 sin( 8/2) 

vl At =r,e[l+(y2)y”2. (7) 

For large w,, At, Eq. (7) reduces to 

r OS x;v, At. (8) 

Since ros N O(u, At), not O(mce At), the oscillation radius can still be small in 
strongly magnetized systems where o, At is large. 

4. GUIDING CENTER MOTION WITH o,, At9 1 

We now analyze the guiding center motion to see what error is introduced when 
o,, At is made large. We start with the difference scheme Eq. (1) and eliminate v 
using v”-l/* = (x” - xnp’)/At and, v”+ ‘I2 = (x”+’ -x”)/At: 

-$ (Xn+l -2x”+x”-‘)=; 1 p+& )Xn+LXn-I)Xjp I . (9) 

Let the magnetic field B be in the x - y plane and define the following coordinates: 
C, = B/B, 6, = 4, and $ = C, x 6,. Let xn = x; + x7, where x7 = r:,(sin c$“C, + cos &‘C,), 
and CJY’=~~~+A~C~=, wzs. x0 is the slowly varying guiding center motion, and x1 
is the fast gyration. Assume that o,, and ros do not vary much between time steps 
so we can use the approximations: ot, c CD”,:’ and rL z r”,: ‘. Taking a Taylor 
series expansion of Eq. (9) about x0, and then equating the slowly varying terms 
gives the guiding center equation: 

$ (xng+l -2x;+x;l-‘)=; B”(x;t)+&(x;+l-x;-l 
1 

)x WG)} 

-zvB(xt)+O (10) 

where ,uos = (qrz,/2At) sin(o,, At). A more complete derivation of Eq. (10) is 
given in the Appendix. Using Eqs. (3) and (7), we find pL,,= i(v:/B) = p. Now, 
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substituting x0( t”) for the approximate solution xl; and expanding about x0( t”) we 
obtain the differential equation that the finite difference Eq. (10) approximates 

dxdf’) E(x,(t”), t”)+ dt -----xB(x,(t”), t”) -;VIj(x,,(t’), t”) 

+ 0 :I-& + O(At)2. 
( > 

(11) 

The additional terms represented by O(q/ m  r&) are the higher order terms that 
where neglected in deriving Eq. (10). The terms represented by O(At’) are from the 
finite difference approximations for dx,ldt and d2x,/dt2 that appear in Eq. (10). 

The guiding center equation of motion given by Northrup [12] from which the 
first-order drifts are derived is 

d2xo q -=- 
dt2 m  

E(x,, t) + 2 x B(x,, t) -XVB(x,,r)+O (12) 

These are the same equations except for the higher order error terms. Assuming ros 
is small compared to the field scale lengths, we expect the same first-order drift 
motion. 

5. RESULTS FROM A ELECTROSTATIC PARTICLE CODE 

In this section we present results from a collective simulation to show what 
happens at large o,, At. We choose as a test problem a bounded plasma slab with 
a cross-field sheath (see Fig. 5). The model is one-dimensional spatially with two 
velocity components (x, u,, u,,). There is a perpendicular constant magnetic field 
(B = I?$). The boundary is a conducting wall parallel to the magnetic field. At the 
right boundary, all particles are absorbed that come in contact to it, and the 
electrostatic potential is allowed to float. At the left is an inversion symmetry plane 

Symmetry plane: f+O Conducting wall: $=V, 

i 

x=0 

Plasma 

1 
x=L 

FIG. 5. Schematic of the test problem. 
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where particles are reflected and the plasma potential is set to zero. The code used 
was PDWl [ 133. Table I gives the parameters used for the two test runs. We use 
the MKSA units system but with .sO set equal to one. Alternatively, the units can 
be described as dimensionless with length and time normalized by A,, and w;‘. We 
chose the parameters such that mpe was small compared to w,, to avoid errors due 
to large wpe At. At was varied to see what errors were introduced. 

For this problem, the potential drop in the sheath is dependent on the disparity 
between the ion and electron gyroradii. As long as Y,, for the electrons is much less 
than Tgi the results are not greatly affected. Figures 6 and 7 show results for two 
runs, one with w,, At = 0.4 and the other with o,, At = 8. Figure 6 is a snapshot of 
the spatial variation of the electrostatic potential at: t = 1000. Figure 7 is a plot of 
the time evolution of the total potential drop, V,. The potential drop is affected 
slightly (-2%) for the large w,, At case due to increase in r,, causing more elec- 
trons to hit the wall. The numerical value of ros using Eq. (7) is l.O2r,, for the 
o,, At = 0.4 case, and 4.12r,,‘for the w,, At = 8 case. There is no significant total 
energy gain, hence we suspect there is no collective instability. The change in the 
electron thermal energy and the total energy was very small for both runs (less than 
0.1% for the time period of the run lOOOw,,). 

The time dependent behavior, Fig. 7, shows an initial transient where particles 
within -rg of the wall are absorbed. This produces a net positive wall charge since 
rgi > rge. There is also a regular oscillation seen later in time measured at w = 0.035. 
This measured quantity compares closely to the lower hybrid resonance [14]: 

(13) 

With the parameters in Table I: o&/w~~ = 6.25 x 10e4 4 1. For this range of 
o&/ofe the lower hybrid resonance is approximately 

Equation (14) can be also be interpreted as an ion Bernstein mode [ 151 with 
k, = 0, obtained by assuming the electrons are fixed in the direction perpendicular 
to B due to the strong magnetization. 

TABLE I 

Parameters for the Magnetized Sheath Test Run 

Parameters Ax=O.l AI = 0.01, 0.2 L = 5.0 B = 40.0 

Electrons 

Ions 

q/m= -1.0 q=-1x10m3 UT = 1.0 Nx5000 
w,=l A,=1 co, = 40.0 rg = 0.025 

q/m = 6.25 x lo-“ q=1x10-3 uT = 0.025 N=5000 
up = 0.025 A,=1 co,. = 0.025 rg= 1 
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FIG. 6. Electrostatic potential vs x, at f = 1000, for two cases: w,, Af = 0.4 (upper 
w, Ar = 8 (lower dashed line). 
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FIG. 7. Wall potential: V, vs time for two cases: o,, Af = 0.4 (upper solid line) and w,, Ar = 8 (lower 
dashed line ). 
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In the results presented mLH At 6 1 which allowed proper resolution of the lower 
hybrid oscillations. Because r,, is so small, the fluctuations associated with the elec- 
tron cyclotron oscillations are much smaller than that of the lower hybrid (or ion 
Bernstein) oscillations. When CD,, At is large we are restricted to modeling physics 
with r,,/AI 6 1, where %, is the scale length of the electric field perpendicular to B. 
However, for large mass ratio the ion gyro-orbit is fully resolved and therefore there 
is no restriction on rgi/AL. The good results using large w,, At depend on ros 4 rgl. 
Increasing the mass ratio improves the results. For example, reducing the mass 
ratio from 1600 to 100, and keeping Ti = T,, produces an error of about - 15% in 
the wall potential. The larger error for the case with smaller mass ratio is the result 
of reducing the ratio of rg, to r,, (in this case by a factor of 4, rgi = 0.25). 

6. DISCUSSION 

We conclude that even with o,, At $1 the Boris algorithm for v x B rotation still 
produces very nearly the correct guiding center motion for a single particle. The 
error introduced is to increase the oscillation radius (rge -+ r,,) and to decrease the 
oscillation frequency (o,, + CD,,). The single particle motion can be described as a 
rapid odd-even bounce motion, bouncing iv, At every time step and having a slow 
precession (ceprec) about the guiding center. 

This paper did not take into account the potential for collective instability. This 
has been previously addressed (see Ref. [8, pp. 201-2021). An electrostatic particle 
simulation of a one-dimensional cross-field sheath was presented. This particular 
problem showed that only slight errors resulted for large values of w,, At. There 
was no significant energy gain, thus no indication of collective numerical instability. 

APPENDIX 

Here we derive Eq. (10) more explicitly. This calculation is very similar to the 
derivation of Eq. (12) given in Ref. [ 12, p. 51. The difference being that Eq. (9) is 
discrete and we cannot gyroaverage over the phase. Instead, we separate the motion 
into a fast oscillating part x1 and a slowly varying part x,,, then we equate the 
slowly varying terms. Except for this difference, the derivations of Eq. (10) and 
Eq. (12) are analogous. Using Eq. (9) with x” = x; + xl and expanding about x;f we 
arrive at 

-$ tx;+’ -2x;1+x;-‘+x’l+‘-2x’1+x;~‘) 

=; E”(x~)+-J--(x~+l-x~-l)xB”(x~) 1 I 
+; (X;.V)En(x;;)+&(x~+l-x;-l)XB”(x;l) i 1 

4 1 +~--(x;+l-x;-‘)x(x~~V)B(x~)+O fr& . 
( > 
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The third term on the right-hand side (we will call it RHS3) is not higher order 
and has a slowly varying part as will be shown below. Subsituting x7 = 
r&(sin #‘C, + cos Q”e,) into RHS, and, assuming I,, and w,, are slowly varying 
functions of time so that r”,, ’ z r”,, z r”,: ’ and w”,; ’ z w”,, z o”,: ’ , we obtain 

RHS&&(x;+‘-x;-‘)x(x;V)&x;;) 

= i& (rz,)2 { [sin(d” + A&o&) - sin(@- Ato~,)]i4, 

+ [cos(qV + Am”,,) - cos(@ - Ato”,,)]i?,} 

x [(sin @3, + cos #“C,) .V] @xl;). (17) 

This can be further simplified to 

RHS 
3 

= 1 (rk)* - sin(oE, At)[&, x (6, .V) B(xt) 
m 2At 

-63 x (62 .V) Wx;t)l +f(d?, (18) 

where we have written-/(@) to represent terms that rapidly oscillate about zero. It 
is seen from this equation that there is a slowly varying part of RHS,. In Ref. [12, 
p. 51 the following result is obtained using V . B = 0: 

$,x($,.V)B-$,x(&,.V)B= -VB. (19) 

Substituting Eq. (19) into Eq. (18) and using the definition of p,, we obtain 

RHS, = - pc,s VB(x;;) + f(qY’). (20) 

Finally, we equate all the slowly varying terms in Eq. (15) and use Eq. (20) for 
RHS,. The resulting equation is Eq. (10). 
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